Model Based Approach for Fault Detection and Prediction Using Particle Filters
نویسندگان
چکیده
Fault detection and failure prediction for nonlinear non-Gaussian systems is an important issue both from the economic and safety point of view. Most of the fault detection techniques assume the system model to be linear and the noise to be Gaussian. These linearization assumptions tend to suffer form poor detection and imprecise prediction. Also, they may lead to false alarms which would incur unnecessary economic expenditure. This thesis aims at using particle filter approach for fault detection and failure prediction in nonlinear non-Gaussian systems. A major advantage of this approach is that the complete probability distribution information of the state estimates from particle filter is utilized for fault detection and failure prediction. Particle filtering methods represent and recursively generate an approximation of the posterior state probability density function. They are Sequential Monte Carlo Methods based on point mass representation of probability densities, which have been applied to the Vertical Take Off and Landing (VTOL) aircraft model and DC motor model in this thesis. Two variants of particle filters: Sequential Importance Sampling Algorithm and Sequential Importance Resampling Algorithm have been studied. Sequential Importance Sampling algorithm suffers from degeneracy problem because of which Sequential Importance Resampling technique is preferred. The system is represented in state space format and the estimates are made according to the Sequential Importance Resampling algorithm. The decision rule for fault detection is evaluated using the likelihood of the estimation parameter over a sliding window. The threshold values for fault detection are set using a heuristic approach. A fault is said to be detected if the likelihood exceeds the expected threshold value. A p-step ahead prediction is done for the DC motor model after the fault has been detected, which is utilized to determine the remaining useful life of the model.
منابع مشابه
A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملDesign of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems
In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملUAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification
Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...
متن کامل